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Abstract

BACKGROUND: Assessing the risk of developing clinical Alzheimer’s disease (AD) dementia, 

by machine learning survival analysis approaches, among participants registered in Alzheimer’s 

Disease Centers is important for AD dementia management.

OBJECTIVE: To construct a prediction model for the onset time of clinical AD dementia using 

the National Alzheimer Coordinating Center (NACC) and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) registered cohorts.

METHODS: A model was constructed using the Random Survival Forest (RSF) approach and 

internally and externally validated on the NACC cohort and the ADNI cohort. An R package and a 

Shiny app were provided for accessing the model.

1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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RESULTS: We built a predictive model having the six predictors: delayed logical memory score 

(story recall), CDR® Dementia Staging Instrument - Sum of Boxes, general orientation in CDR®, 

ability to remember dates and ability to pay bills in the Functional Activities Questionnaire, and 

patient age. The C indices of the model were 90.82% (SE = 0.71%) and 86.51% (SE = 0.75%) in 

NACC and ADNI respectively. The time-dependent AUC and accuracy at 48 months were 92.48% 

(SE = 1.12%) and 88.66% (SE = 1.00%) respectively in NACC, and 90.16% (SE = 1.12%) and 

85.00% (SE = 1.14%) respectively in ADNI.

CONCLUSION: The model showed good prediction performance and the six predictors were 

easy to obtain, cost-effective and non-invasive. The model could be used to inform clinicians and 

patients on the probability of developing clinical AD dementia in 4 years with high accuracy.
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INTRODUCTION:

Individuals presenting for clinical evaluation with memory concerns can show no clear 

decrements on cognitive testing (i.e., “subjective cognitive decline”) or perform objectively 

low on testing but maintain their independence with completing daily activities (i.e., mild 

cognitive impairment or MCI). These patients do not inevitably progress to dementia, 

defined as objective evidence of cognitive impairment sufficient to impact the independent 

execution of daily activities. Identifying patients who are likely to progress to dementia and 

predicting the onset time of dementia could inform clinical management, such as prioritizing 

high-risk patients to receive certain interventions. It would also assist patients and their 

families with long-term care planning.

Recently, many prediction models were proposed for large-scale automatic screening [1], for 

example, Support Vector Machine, Logistic Regression, Cox Regression, Random Forest, 

and Neural Networks. However, most of them used classification prediction methods [2–

4] that do not intrinsically model the time and censored cases (dementia onset was not 

observed on those subjects by the end of the study). Because cognitive changes can progress 

gradually, it is not uncommon that individuals in longitudinal aging studies never reach the 

outcome of dementia. Excluding these cases biases results. Other approaches have been 

limited to classical survival statistical methods (e.g. Cox proportional hazards model) [5] 

which are not appropriate for large complex clinical datasets with potential multicollinearity 

and high-order interactions.

Machine learning methods (ML) are considered state-of-the-art tools to model complex 

clinical datasets, especially those in heterogeneous, high-dimensional, and non-linear 

relationship structures [6]. The Random Survival Forest (RSF) [7] model is an ML-based 

survival analysis method that can model the censored data and output the time-to-event 

probabilities. It benefits from directly tackling the time and censoring as its main outcomes, 

which utilizes more information compared to classification methods and avoids biased 

results due to censoring. It is also able to output the probability of the event occurrence at 
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every event time observed in samples, whereas a classification model can only output the 

probability of event occurrence at a pre-specified time.

Predicting progression to clinically-defined dementia diagnosis is critical. With rapid 

advances in technology, biomarkers like structural or positron emission tomography (PET) 

neuroimaging, cerebrospinal fluid (CSF) assays have been increasingly available, and the 

accuracy of laboratory tests has significantly improved to identify the etiology of symptoms 

and likelihood of symptom progression in patients with neurodegenerative conditions like 

Alzheimer disease (AD). However, such tests are not ubiquitous, and several remain cost-

prohibitive in many clinical settings. For example, AD-conversion survival analyses based 

on neuroimaging data are often limited in sample size which inevitably compromises their 

generalizability [8–13]. Prediction models that accurately classify patients at greatest risk of 

progressing to dementia by leveraging readily available clinical data remain essential and 

would have widespread utility, especially in settings without access to advanced biomarker 

collection tools.

In this study, we utilized two large datasets that included patients with and without cognitive 

impairment who were followed longitudinally to track symptom progression – the National 

Alzheimer’s Coordinating Center Uniform Dataset (NACC-UDS) and the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI). Our overarching aim was to identify readily 

accessible variables that are highly predictive of patients who were free of dementia at 

baseline but progressed to clinical AD dementia during the study. We built and validated 

an RSF model that uses only a small set of accessible variables. A secondary aim was to 

provide the model via an R package and a Shiny app to facilitate its wide use by the clinical 

research community.

METHODS:

DATA SOURCE

The data were from two sources: NACC and ADNI. NACC was launched by the National 

Institute on Aging in 1999 and collected data from the NIA-funded Alzheimer’s Disease 

Centers (ADCs) across the United States (https://naccdata.org). By February 2022, the 

NACC-UDS had three versions and contained records for over 45,000 patients ranging 

from cognitively normal to dementia in 45 ADCs. The other dataset used for external 

validation is the ADNI-MERGE dataset from ADNI database (http://adni.loni.usc.edu). 

ADNI, established in 2003, is another longitudinal multicenter study. Its main goal is to 

develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and 

tracking of MCI and AD dementia.

ETHICAL CONSIDERATIONS

Both NACC and ADNI obtained approvals from the Institutional Review Boards of 

all participating institutions. In NACC, ethical approval was obtained from each site’s 

institutional review board, and all participants provided informed written consent. Informed 

written consent was also acquired from participants or their proxies in ADNI. The 

University of Florida IRB deemed the current analysis to be exempt (IRB202202769).
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DIAGNOSIS OF CLINICAL AD DEMENTIA

The outcome of interest for the current analysis was time to a clinician diagnosis of 

AD dementia. In both NACC and ADNI, cognitive status and suspected etiology were 

determined by clinicians at each contributing site [5,14]. For the current analysis, the 

variable NACCUDSD was used to determine the cognitive status for each participant, and 

the variable NACCETPR was used for the primary etiology for cases derived from NACC 

[5]. In ADNI dataset, AD is the exclusive etiology, and variables DX.bl and DX at each visit 

were used to determine the cognitive status [14].

PARTICIPANT INCLUSION CRITERIA

In the datasets, we included those participants who (1) had at least one follow-up visit, (2) 

were not diagnosed with any dementia at the baseline visit, and (3) were age 55 years or 

older at baseline [5,15]. In NACC, we included individuals who were labeled as cognitively 

normal (CN), MCI, or impaired-but-not-MCI. In ADNI, we included individuals labeled as 

CN or MCI.

NACC VERSION CHANGES

In 2015, the NACC UDS underwent a substantial revision into version 3 [16]. Several 

variables in the Neuropsychological Battery in versions 1 and 2 were no longer collected 

in version 3, whereas alternatives of some of these variables and other new variables were 

added in version 3. To overcome this data version change, the NACC data were split into 

two parts in our analysis – the first part consisted of the participants whose first visit was 

measured by the UDS forms version 1 or version 2, denoted as NACC-v1v2; the second part 

was the cohort of participants who were evaluated by the UDS form version 3 on their first 

visit, denoted as NACC-v3.

MODEL CONSTRUCTION DATA

We built our initial model using NACC-v1v2 because of the large sample size and NACC’s 

widespread use in similar dementia research [2,4,5,17]. The baseline collection date for 

the participants in NACC-v1v2 ranged from June 09, 2005, to June 04, 2015. From a 

total of 32,787 subjects and 137,544 visit records, we sequentially detected and excluded 

8,834 people who did not have any follow-up visit, 7,651 people who had at least one 

follow-up visit but were diagnosed with dementia at the baseline visit, and 714 participants 

younger than 55 years old at baseline. After that, 15,588 participants were included in the 

NACC-v1v2 cohort.

MODEL VALIDATION DATA

NACC-v3 was used as the first external validation dataset to assess the generalizability of 

our derived model. NACC-v3 contained participants who had baseline measurements from 

March 16, 2015, to February 09, 2022. From a total of 12,313 subjects and 28,538 visit 

records, we sequentially excluded 4,778 people who did not have any follow-up visit, 1,719 

people who had at least one follow-up visit but were diagnosed with dementia at the baseline 

visit, and 330 participants younger than 55 years old. After that, 5,486 participants were 

included in the NACC-v3 cohort.
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The second external validation dataset was ADNI, which contains individuals who were 

recruited in ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 and had baseline visits from 

September 07, 2005, to May 17, 2022. The total number of participants was 2,404 with 

15,945 visit records. After successively removing 265 participants who had no follow-up, 

367 participants who had follow-up but were diagnosed with dementia at the baseline visit, 

and 3 participants who had no age information (the rest were all older than 55), the ADNI 

cohort consisted of 1,769 participants.

SURVIVAL ANALYSIS (TIME-TO-EVENT ANALYSIS)

Progression from CN or MCI to dementia can take several years or even decades [18]. 

Therefore, many participants were not diagnosed with dementia prior to the end of the study. 

This cannot be handled by common regression or classification methods. Our study utilized 

survival analysis, also known as time-to-event analysis, which is a collection of statistical 

methods that can appropriately handle censoring of event times.

OUTCOME VARIABLES

The primary outcome variable was the time to the clinical AD dementia. This was defined 

by the total months from the baseline visit to a dementia onset with a clinical primary 

etiology of AD or a censoring event. Censoring events were events that would essentially 

prevent observation of a diagnosis of dementia in the study and included dropout, death, or 

diagnosis of dementia with a non-AD clinical primary etiology (e.g., Lewy body disease, 

frontotemporal lobar degeneration).

CANDIDATE PREDICTORS

The candidate predicting variables were selected by the following variable exclusion 

criterion from all available 1014 variables measured at the baseline visit in NACC-v1v2. 

Our variable exclusion criterion consisted of (1) free text variables, such as symptom 

specification (2) administration variables, such as patient ID and form version; (3) cross-

sectional variables that record the longitudinal results, such as baseline variables denoting 

if the patient finally progresses to dementia during the study; (4) variables with over 

50% missing entries. After excluding these variables, 317 candidate variables remained 

for the subsequent variable selection procedure. A detailed data pre-processing procedure 

and names of candidate variables are available in the Supplementary Materials S1 and 

Supplementary Table 3.

PREDICTION MODEL

The Random Survival Forest was used to build the prediction model. RSF is an ensemble 

learning method containing a great number of deep-grown survival decision trees that can 

achieve low bias. The output of RSF is synthesized from the results of all the built trees. 

The random comes from two sources: 1) each tree was grown on a random bootstrap 

samples and 2) the splitting variables were randomly selected at each node during the tree 

construction. These two randomization steps decorrelate the trees and can decrease the 

variance introduced by bagging. With the combination of low bias and variance reduction 

techniques, the RSF can approximate various forms of functions while maintaining low 
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generalization errors. The RSF has advantages in handling the following complications: 1) 

high-dimensional data 2) a large number of categorical variables 3) existence of outliers, 

4) non-linear associations and 5) other violations of assumptions for traditional regression 

models such as multicollinearity [19]. RSF is regarded as one of the state-of-art machine 

learning algorithms for heterogeneous data, such as the NACC and ADNI datasets, which 

consist of many categorical and continuous clinical outcome variables on different scales. 

The RSF was implemented by the R package, randomForestSRC version 3.1.1 [20]. Figure 1 

displays the model development and evaluation diagram.

VARIABLE SELECTION

We used the permutation variable importance (VIMP) generated by RSF to select the best 

variable set [21] among the candidate variables. The VIMP was calculated by randomly 

permuting the values of a variable in out-of-bag samples so that the contribution of the 

variable to predicting the outcome is like random noise. Then the difference of the prediction 

errors before and after the permutation was recorded as the VIMP. If the decrease in 

the prediction error was high, it meant that the permutated variable was predictive of the 

response. We first obtained the VIMP of all the candidate 317 variables on NACC-v1v2, 

then these variables were ranked by the descending VIMP order. A subset of variables was 

accordingly selected to build the final mode considering 1) the VIMP ranking 2) availability 

and cost-effective consideration 3) final model complexity.

MODEL VALIDATION

Our model evaluation employed three commonly used measurements for time-to-event 

models. Harrell’s C-index [22] assesses an overall model prediction performance regardless 

of a specific time point. It ranges from 0 to 1 and represents the proportion of the concordant 

pairs where the subjects with higher (lower) risk matched shorter (longer) survival time. 

Models having Harrell’s C-index over 70% are generally regarded as good models [23]. 

The time-dependent Area under Curve (AUC) and time-dependent accuracy at 48 months 

were also reported for a time-specific model performance [24,25]. The standard errors 

(SE) of these measures were obtained by ten-fold cross-validation in the internal validation 

(approximately) or bootstrap sampling in the external validation. Harrell’s C-index was 

calculated by R package Hmisc version 4.7–0 [26]. The time-dependent AUC and time-

dependent accuracy were calculated by R package timeROC version 0.4 [27].

Because the prediction model was developed based on NACC-v1v2, data from NACC-v1v2 

could not be used to directly test the model. Instead, a ten-fold cross-validation was 

employed for internal validation to prevent the over-optimistic model performance due to 

data leakage [19]. Specifically, the data were randomly and evenly split into ten folds; each 

time, one of the ten folds was treated as a testing set and the rest nine folds were used as a 

training set to build the inner model. There were ten different testing sets on each of which 

the corresponding inner model was evaluated. The average performance and standard errors 

(SE) of the inner models were recorded.

For the external validation using NACC-v3 and ADNI, when model variables were all 

available in the validation datasets, our model was directly applied to output the model 
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measurements. When model variables were not available in the validation datasets, we 

rescaled and replaced the NACC-v1v2 variable with the most closely related variable from 

the validation dataset.

VARIABLE PARTIAL EFFECT

We further investigated the role each variable played in the model. The partial dependence 

plot (PDP) [28] can show the average model prediction given one variable adjusting for all 

other variables in a dataset, empirically. We in effect fix the selected variable at one of its 

possible values each time while letting the rest of model variables take values across all data 

points in the dataset. The mathematical formula is,

ft x =  1n ∑
i = 1

n
ft x, xi, o

where ft is the partial dependence function at time t,n is the sample size, ft is the model 

prediction function at time t,x is the target variable value, xi,o is the rest of model variables 

of the i th subject. Since the model prediction also involves time point for time-to-event data 

as denoted, we focused on the PDPs at 48 months.

SUBGROUP ANALYSIS OF BIOMARKER-VERIFIED COHORT

We conducted a subgroup analysis on subjects in the NACC-v1v2 and NACC-v3 cohorts 

who had an etiological diagnosis of AD supported by a positive AD biomarker. The criterion 

to identify AD biomarker evidence was based on abnormally elevated amyloid on PET 

(variable AMYLPET in NACC) or abnormally low amyloid in CSF (variable AMYLCSF in 

NACC) suggested by White et al. (2022) [29].

SENSITIVITY ANALYSIS FOR MISSING DATA DUE TO IMPAIRMENT

In NACC data, missing data are coded based on reasons for missingness. One of the 

missing data codes (“96”) reflects data missing because of cognitive/behavior problems, 

likely reflecting severe clinical impairment. To use as much information as possible, in 

the main analysis, 96 was recoded as the lowest score of the test. For example, for a test 

scoring from 0 to 10, if a person had missing code 96, then his/her score was marked 

to 0. A sensitivity analysis was performed in which the missing code 96 was treated as 

non-informative missing values.

MODEL COMPARISON TO XGBOOST

Further, in place of RSF, we implemented and evaluated the XGBoost models with the same 

six variables selected by RSF and on the same datasets. Supplementary Materials S6 showed 

a brief description of XGBoost and the settings of the tuning parameters. The R package 

used for XGBoost is xgboost v 1.5.2.1 [30] downloaded from CRAN.
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RESULTS:

NACC-V1V2 COHORT BASELINE CHARACTERISTICS

The NACC-v1v2 cohort included 15,588 subjects (mean age at baseline = 73.2±8.6 years, 

59.5% female, mean education = 15.5±3.2 years; see Table 1). The participants were on 

average followed for 65.6 (SD = 46.9) months prior to event or censoring. When comparing 

participants that progressed to clinical AD dementia (N = 2,866, 18.4%) with the non-

progressed participants (N = 12,722. 81.6%), the “progressed” group was significantly older 

at baseline, more likely to be male, and had fewer years of education. The “progressed” 

group also had shorter follow-up time, higher baseline Clinical Dementia Rating® scale Sum 

of Boxes scores (CDR-SB), and lower baseline Mini Mental State Examination (MMSE) 

scores, and was more likely to have baseline MCI and more likely to report subjective 

cognitive decline among its CN group at baseline.

SELECTION OF THE MODEL VARIABLES

We collected the average VIMPs of all 317 candidate variables in the NACC-v1v2 

cohort by independently running the VIMP algorithm with ten different random seeds. 

The top 6 variables were selected (Figure 2) consisting of delayed logical memory 

score (MEMUNITS), subject age (NACCAGE), Functional Activities Questionnaire 

(REMDATES, BILLS), Clinical Dementia Rating (CDR-SB, ORIENT). All are available 

in both NACC-v1v2 and ADNI, whereas in NACC-v3, MEMUNITS was not collected. 

NACC-v3 implemented the Craft Story in lieu of Logical Memory and similarly includes an 

immediate and delayed recall or story components. Therefore, we rescaled and used delayed 

verbatim recall score from the Craft Story (CRAFTDVR) in place of MEMUNITS for the 

NACC-v3 external validation. Table 2 presented the names, the description, and the value 

ranges of these 6 variables in NACC-v1v2, NACC-v3, and ADNI.

NACC-V3 COHORT BASELINE CHARACTERISTICS

There were 5,486 subjects in the NACC-v3 cohort (mean age at baseline = 71.0±7.5 years, 

60.2% female, mean education = 16.2±2.9 years; see Table 3). The participants were on 

average followed for 30.7±16.5 months prior to event or censoring. When comparing the 

progressed participants (N = 448, 8.2%) with the non-progressed participants (N = 5,038, 

91.8%), the “progressed” group was older at baseline and more likely to be male. The 

“progressed” group again had significantly lower follow-up time and had higher baseline 

CDR-SB and lower MMSE scores. This group was more likely to have MCI at baseline 

but did not significantly report more subjective cognitive decline among its CN group at 

baseline, possibly relating to sample size.

ADNI COHORT BASELINE CHARACTERISTICS

The ADNI cohort included 1,769 participants (Table 4). They were on average followed for 

52.1±40.9 months prior to event or censoring. Compared to the non-progressed participants 

(N = 1,364. 77.1%), the “progressed” group (N = 405. 22.9%) was older at baseline and 

more likely to be male. The “progressed” group also had significantly shorter follow-up 
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time, fewer years of education, higher baseline CDR-SB, and lower baseline MMSE. 

Individuals who progressed were significantly more likely to have MCI at baseline.

MODEL PERFORMANCE

The internal model evaluation on NACC-v1v2 resulted in a C index 85.21% (SE = 0.80%). 

The time-dependent AUC and the time-dependent accuracy at 48 months were respectively 

90.26% (SE = 0.94%) and 90.06% (SE = 0.42%). The predictive performance in the testing 

sets across the ten-fold cross-validation table was shown in Table 5. The external validation 

on NACC-v3 showed a better performance in that the C index was 90.82% (SE = 0.71%). 

Additionally, the time-dependent AUC and accuracy at 48 months were 92.48% (SE = 

1.12%) and 88.66% (SE = 1.00%), respectively. For the ADNI external validation, the C 

index was 86.51% (SE = 0.75%) and the time-dependent AUC and accuracy at 48 months 

were 90.16% (SE = 1.12%). and 85.00% (SE = 1.14%), respectively.

VARIABLE PARTIAL EFFECT

We displayed the PDPs at 48 months of the six variables based our model and NACC-

v1v2 cohort (Figure 3). For convenience, we dubbed the y-axis values in PDPs as the 

“average predicted probability” which is interpreted as the average predicted probability 

of progressing to clinical AD dementia at 48 months in the NACC-v1v2 cohort at the 

fixed variable values, i.e., the x-axis values in the PDPs. For BILLS, the average predicted 

probability went up from 15% to 30% as the BILLS took value from 0 to 3. REMDATES 

had a similar PDP pattern as BILLS. The average predicted probability rose from 14% 

to 17% as ORIENT increased from 0 to 1 and leveled off for larger values of ORIENT. 

For CDR-SB, the average predicted probability increased sharply from 5% to 55% as the 

CDR-SB increased from 0 to 7.5. The flat trend at the end of the curve was due to few 

cases with the very high CDR-SB. For MEMUNITS, when it varied from 0 to 10, the 

average predicted probability dropped from 35% to 10%, which means that the more units 

the subject recalled, the lower average predicted probability was. After MEMUNITS scores 

over 10, the average predicted probability concentrated at 5% to 10%. For NACCAGE, 

55–65 age group had a horizontal average predicted probability at 10%; 65–90 age group 

showed a steady increase from 10% to 30%; 90–110 leveled off at 30% which is possibly 

due to limited cases in the oldest age group. In these PDPs, all variables except for ORIENT 

showed prominent effects on changing the risk of progression to AD dementia at 48 months, 

especially for CDRSUM.

MODEL IMPLEMENTATION AND VISUALIZATION

We provided a direct access to download and implement the model via an R package 

(https://github.com/songuf/NACCADNI) and a web browser visualization tool via an R 

Shiny App (https://shangchensong.shinyapps.io/NACC-ADNI-shiny) that can generate the 

predicted probabilities and the time-to-event curve for each input subject. A screenshot of 

the Shiny was included as the Supplementary Figure 1.
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SUBGROUP AND SENSITIVITY ANALYSES

The subgroup analysis was conducted for the subjects in the NACC cohort who had an 

etiology confirmation by biomarkers (n = 309 for NACC-v1v2 and n = 806 for NACC-v3). 

The model measurements in this subgroup were still considered good (Supplementary Table 

1). The SEs were larger than the main analyses since the sample size was significantly 

reduced. The sensitivity analysis where the code 96 in cognitive test variables was treated as 

missing values shows good performance for the model as well (Supplementary Table 2).

MODEL COMPARISON TO XGBOOST

The performance of XGBoost was evaluated in the 48-month time-dependent AUCs, which 

were 90.60% (SE = 0.62%) in the internal validation, 89.50% (SE = 0.93%) in NACC-v3 

external validation, and 84.76% (SE = 1.13%) in the ADNI external validation. All these 

metrics were no better or comparable than those of RSF.

DISCUSSION:

This study employed a novel RSF approach with its build-in VIMP algorithm to construct 

a parsimonious prediction model using the NACC-v1v2 dataset. Only six readily available 

and easily collected variables were required for the model prediction. The model accurately 

predicted clinical AD dementia onset time of participants who did not have dementia at 

baseline (CN, impaired-but-not-MCI or MCI) across data sets. These findings can inform 

targeted evaluations of older adults at risk for dementia. Earlier identification of older adults 

at elevated risk of progressing to dementia is important for intervention and care planning 

[31–33].

Previous research rarely considered intrinsic censorship in dementia data [2–4,34] but 

instead handled it as a classification problem. For a comprehensive review of studies 

focusing on classification methods, we refer readers to Kumar et al. (2021) [35], Battineni 

et al. (2022) [36], and Javeed et al. (2023) [37]. The classification methods typically 

dichotomize the response by whether or not a subject experiences the event by a specified 

time point. This practice may raise two issues. First, given that event onset information 

at only one time point is modelled, the prediction output merely reflects that one time 

point. Second, if a participant was lost to follow-up before the cut time point, he/she is 

discarded due to the incomplete observation. Our model resolves these two issues by directly 

considering dementia onset as a time-to-event outcome.

Although large longitudinal datasets provide abundant sources of potential risk factors 

for dementia progression, in the traditional model construction, the variables are often pre-

specified by experts or/and evidence from the existing literature. This does not commonly 

cover all available variables and may miss relevant factors. The VIMP algorithm used in this 

study is able to screen a large number of variables while taking into account all possible 

interactions among the variables, providing an efficient tool to sieve out the most influential 

features [38].

Our model is based on RSF, which is considered the state-of-art machine learning survival 

model for complex clinical data. Compared to classical time-to-event methods, the RSF 
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can appropriately model high-dimensional and non-linear complex relationships with tree 

structures. To the best of our knowledge, this is the first survival analysis of non-dementia 

cohorts based on the ADNI or NACC data that utilized solely clinical variables for 

prediction. As a parsimonious model, our method outperformed the three most relevant 

historical studies that also utilized NACC or ADNI populations. Wang et al. (2022) [5] 

proposed a Cox proportional hazard model with 7 clinical variables to predict the time-to-

any-cause dementia onset in the MCI cohort of NACC and ADNI, reporting C indices of 

69% and 72%, respectively [5]. Khajehpiri et al. (2021) [14] developed an XGBoost model 

using 14 MRI-based and clinical variables in ADNI to predict the onset time of clinical AD 

dementia among MCI participants, achieving a C index of 84.5% [8]. Using a deep survival 

analysis with 63 features from MRI-based, genetic, and clinical variables, Mirabnahrazama 

et al. (2022) [13] predicted the time-to-AD-dementia in 401 subjects from either a CN or 

MCI state within the ADNI dataset with a C index of 83.1%. Mirabnahrazama et al. (2022) 

acknowledged the small sample size of their study and recommended external validation on 

NACC data, which is exactly what we did in this study.

Prior studies using NACC data usually did not consider the changes from UDS version 

1 and version 2 to the version 3 updated in 2015 [2,4] and external validation using 

multiple datasets is uncommon. The three validations in our study strengthen the findings. 

Additionally, all variables in our model (CDR-SB, delayed story recall, item-level responses 

from the FAQ [ability to remember dates or pay bills], general orientation, and patient age) 

are easy to obtain, cost-effective, non-invasive and showed considerable predictive utility in 

other research. An earlier study indicated that delayed story recall was among the strongest 

predictors of cognitive decline in their models [3]. The rest of variables selected in our 

models overlap with those in the Wang and Khajehpiri models using NACC and ADNI 

previously, including CDR-SB, Functional Activities Questionnaire, and subject baseline 

age.

Dementia refers to the presence of objective cognitive and/or behavioral decline of sufficient 

severity to impact independent execution of activities of daily living, irrespective of 

etiology. Multiple neurodegenerative diseases can cause dementia and symptoms alone 

may have limited specificity to pinpoint the underlying disease. In recent years, academic 

research centers and some clinical settings have begun more routinely performing CSF 

analyses and/or PET imaging that are well-validated for in vivo detection of AD pathology. 

Incorporating AD-specific biomarkers improves accuracy in identifying the etiology of 

a patient’s cognitive decline. We therefore evaluated a subgroup of participants with 

biomarker-confirmed AD to see whether our model performed differently in patients with 

biomarker-supported AD compared to a clinical AD dementia cohort. The subgroup analysis 

among biomarker-confirmed AD participants showed that the six easily collected clinical 

variables are highly predictive of progress to AD-dementia in both types of cohorts, 

suggesting our model has a wide applicability.

Our method can be applied to develop predictive models for other types of dementia as 

well. For instance, we may treat Frontotemporal Lobar Degeneration (FTLD) as the event of 

interest and consider other dementia types as censoring events. To illustrate, we conducted 

the internal model training and testing for FTLD on the NACC-v1v2 data and selected 
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six most important variables by the VImp algorithm: (1) primary progressive aphasia 

(PPHPHIF), (2) motor disturbance severity (MOTSEV), (3) primary progressive aphasia 

subtype (NACCPPME), (4) the subject completed FTLD module visits or not (NACCFTD), 

(5) presumptive etiologic diagnosis of primary progressive aphasia (PPA) and (6) Total 

MMSE score (NACCMMSE). With this model, the ten-fold cross validation results showed 

both great C-index (93.21%, SD: 5.51%) and 48-month time-dependent AUC (93.69%, SD: 

7.63%).

Our study has several limitations. First, the NACC and ADNI databases are referral-, 

volunteer-based databases that might not translate to population-based samples. NACC 

has known biases relating to recruitment of largely white non-Hispanic participants, and 

the generalizability of our method to other ethnic groups is to be investigated in the 

future when data become available. Additionally, we assumed that data were missing 

completely at random and the incomplete cases for the given six variables are removed 

during the model construction. Third, like many other survival analysis methods, the RSF 

relies on the assumption of non-informative censoring, which may not be necessarily 

true in the investigated datasets. Fourth, a carefully designed method may be needed 

to represent MEMUNITS with CRAFTDVR when the former is unavailable, although 

the current rescaling approach works reasonably well. Moreover, only publicly available 

clinical variables were utilized in our model; other modalities of data such as neuroimages, 

if available with a reasonable sample size, could be incorporated in our model to 

further improve its predictive performance. Finally, when high multicollinearity exists 

among variables, the Accumulated Local Effects Plot (ALE) was suggested in literature 

as an alternative to PDP [39]. However, the ALE has not been implemented in the 

randomforestSRC or any other R packages.

In conclusion, this study developed and validated an RSF model with good prediction 

accuracy progression to clinical AD dementia. The RSF model built in this study is easily 

implementable and can provide useful prognostic information for clinical practice. Future 

studies may directly conduct variable selection among cohorts with biomarker-confirmed 

AD dementia if sample size allows and investigate variables discarded in this study due to 

missingness. The RSF model will be extended to handle informative censoring to further 

improve its predictive performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model Development and Validation Diagram
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Figure 2. 
Top 6 Variable Importance Percentages
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Figure 3. 
Partial dependence plot
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Table 1

NACC-v1v2 Cohort Baseline Characteristics

Characteristics Non-progressed (N = 
12,722)

Progressed (N = 2,866) P value Overall (N = 15,588)

Follow-up Time*,months, mean (SD) 69.3 (47.5) 48.9 (39.8) < 0.001 65.6 (46.9)

Age, years, mean (SD) 72.5 (8.54) 76.6 (7.88) < 0.001 73.2 (8.60)

Sex, n (%) < 0.001

 Male 5,022 (39.5%) 1,293 (45.1%) 6315 (40.5%)

 Female 7,700 (60.5%) 1,573 (54.9%) 9273 (59.5%)

Education, years, mean (SD) 15.5 (3.20) 15.3 (3.30) < 0.001 15.5 (3.20)

CDR-SB, mean (SD) 0.392 (0.772) 1.27 (1.24) < 0.001 0.553 (0.940)

MMSE, mean (SD) 28.5 (1.81) 27.1 (2.43) < 0.001 28.3 (2.02)

Subjective Cognitive Decline Among CN, n 
(%)

< 0.001

 Yes 2,183 (24.7%) 256 (32.4%) 2439 (25.3%)

 No 6,656 (75.3%) 534 (67.6%) 7190 (74.7%)

Cognitive Status, n (%) < 0.001

CN 8,839 (69.5%) 790 (27.6%) 9,629 (61.8%)

Impaired-not-MCI 846 (6.6%) 184 (6.4%) 1,030 (6.6%)

MCI 3,037 (23.9%) 1,892 (66.0%) 4,929 (31.6%)

For continuous variables, the one-sided Mann-Whitney U test is used; for categorical variables, the Chi-square test is used. The NA entries were 
removed for continuous variables before calculating the summary statistics. The NA category for categorical variables was not considered in the 

Chi-square test. SD: standard deviation, CDR-SB: CDR® Dementia Staging Instrument - Sum of Boxes, MMSE: Mini Mental State Examination, 
CN: cognitively normal, MCI: mild cognitive impairment.

*
The follow-up time is prior to event or censoring.
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Table 2

Selected Top 6 Variables

Name in NACC-
v1v2

Name in ADNI Description in NACC-v1v2 Designed Value Range in NACC-v1v2

MEMUNITS LDELTOTAL Logical Memory IIA - Delayed - Total number of 
story units recalled

Integers from 0 to 25

NACCAGE AGE Subject age at the baseline visit Integers from 55 to 120

CDRSUM CDRSB CDR® Dementia Staging Instrument - Sum of 
Boxes

0.0, 0.5, 1.0, 1.5, …, 18.0 (scores of 16.5 
and 17.5 not possible)

REMEDATES FAQREM N 9 In the past four weeks, did the subject 
have any difficulty or need help with: 
Remembering appointments, family occasions, 
holidays, medications

0 = Normal; 1 = Has difficulty, but does 
by self; 2 = Requires assistance; 3 = 
Dependent

BILLS FAQFINAN N 1 In the past four weeks, did the subject have 
any difficulty or need help with: Writing checks, 
paying bills, or balancing a checkbook

0 = Normal; 1 = Has difficulty, but does 
by self; 2 = Requires assistance; 3 = 
Dependent

ORIENT CDORIENT Orientation sub question in CDR 0.0, 0.5, 1.0, 2.0,3.0

Name in NACC-
v1v2

Surrogate Variable 
in NACC-v3

Description in NACC-v3 Designed Value Range in NACC-v3

MEMUNITS CRAFTDVR Craft Story 21 Recall (Delayed) — Total story 
units recalled, verbatim scoring

Integers from 0 to 44
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Table 3

NACC-v3 Cohort Baseline Characteristics

Characteristics Non-progressed (N = 5,038) Progressed (N = 448) P value Overall (N = 5,486)

Follow-up Time*, months, mean (SD) 31.3 (16.5) 23.7 (13.7) < 0.001 30.7 (16.5)

Age, years, mean (SD) 70.7 (7.45) 73.7 (7.43) < 0.001 71.0 (7.50)

Sex, n (%) < 0.001

 Male 1,962 (38.9%) 222 (49.6%) 2184 (39.8%)

 Female 3,076 (61.1%) 226 (50.4%) 3302 (60.2%)

Education, years,mean (SD) 16.2 (2.90) 16.1 (3.22) 0.47 16.2 (2.90)

CDR-SB, mean (SD) 0.426 (0.768) 1.80 (1.18) < 0.001 0.538 (0.893)

MMSE, mean (SD) 27.7 (2.44) 24.4 (2.01) < 0.001 27.5 (2.60)

Subjective Cognitive Decline Among CN, n (%) 0.47

 Yes 952 (28.3%) 12 (35.3%) 964 (28.3%)

 No 2,417 (71.7%) 22 (64.7%) 2,439 (71.7%)

 NA 1 (0.0%) 0 (0%) 1 (0.0%)

Cognitive Statis, n (%) < 0.001

CN 3,370 (66.9%) 34 (7.6%) 3,404 (62.0%)

Impaired-not-MCI 280 (5.6%) 12 (2.7%) 292 (5.3%)

MCI 1,388 (27.6%) 402 (89.7%) 1,790 (32.7%)

For continuous variables, the one-sided Mann-Whitney U test is used; for categorical variables, the Chi-square test is used. The NA entries were 
removed for continuous variables before calculating the summary statistics. The NA category for categorical variables was not considered in the 

Chi-square test. SD: standard deviation, CDR-SB: CDR® Dementia Staging Instrument - Sum of Boxes, MMSE: Mini Mental State Examination, 
CN: cognitively normal, MCI: mild cognitive impairment.

*
The follow-up time is prior to event or censoring.

J Alzheimers Dis. Author manuscript; available in PMC 2023 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 22

Table 4

ADNI Cohort Baseline Characteristics

Characteristics Non-progressed (N = 1,364) Progressed (N = 405) P value Overall (N = 1,769)

Follow-up Time*, months, mean (SD) 57.1 (42.3) 35.1 (30.2) < 0.001 52.1 (40.9)

Age, years, mean (SD) 72.6 (6.97) 74.0 (6.92) < 0.001 72.9 (6.98)

Sex, n (%) 0.0064

 Male 701 (51.4%) 240 (59.3%) 941 (53.2%)

 Female 663 (48.6%) 165 (40.7%) 828 (46.8%)

Education, years, mean (SD) 16.3 (2.68) 15.9 (2.73) 0.0025 16.2 (2.7)

CDR-SB, mean (SD) 0.599 (0.826) 1.73 (1.05) < 0.001 0.859 (1.00)

MMSE, mean (SD) 28.6 (1.55) 27.3 (1.87) < 0.001 28.3 (1.72)

Cognitive Status, n (%) < 0.001

CN 750 (55.0%) 35 (8.6%) 785 (44.4%)

MCI 614 (45.0%) 370 (91.4%) 984 (55.6%)

For continuous variables, the one-sided Mann-Whitney U test is used; for categorical variables, the Chi-square test is used. The NA entries were 
removed for continuous variables before calculating the summary statistics. The NA category for categorical variables was not considered in the 

Chi-square test. SD: standard deviation, CDR-SB: CDR® Dementia Staging Instrument - Sum of Boxes, MMSE: Mini Mental State Examination, 
CN: cognitively normal, MCI: mild cognitive impairment.

*
The follow-up time is prior to event or censoring.
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Table 5

NACC-v1v2 Cohort Baseline Characteristics

Fold C index Accuracy AUC

1 84.32 89.69 89.84

2 85.06 90.34 91.31

3 84.02 89.89 89.4

4 85.35 89.72 89.77

5 86.72 90.56 91.74

6 85.81 90.18 90.67

7 85.97 89.47 91.35

8 84.59 90.68 89.30

9 84.92 90.39 90.00

10 85.35 89.69 89.21

Average 85.21 90.061 90.26

AUC: area under curve. Accuracy and AUC are both 48-month time-dependent.
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